1. General

On 13 April 2013, the Maryland/District of Columbia Records Committee (MD/DCRC) held its annual Skins Workshop at the Division of Birds, National Museum of Natural History (NMNH), Smithsonian Institution, Washington, DC. Our host was Dave Bridge. The committee thanks Dave for sharing his time and insights and for his continued support to the MD/DCRC.

The agenda and taxa to be reviewed during the workshop (and species account author) included the following:

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Juvenile Sharp-tailed vs. Pectoral Sandpipers</td>
<td>Bill Hubick</td>
</tr>
<tr>
<td>2. Wood Sandpiper vs. Solitary Sandpiper</td>
<td>Nancy Magnusson</td>
</tr>
<tr>
<td>3. Common Ringed Plover vs. Semipalmated Plover</td>
<td>Clive Harris</td>
</tr>
<tr>
<td>4. Notes on the four godwit species</td>
<td>Sherman Suter</td>
</tr>
<tr>
<td>5. Eurasian Woodcock vs. American Woodcock</td>
<td>Patty Craig</td>
</tr>
<tr>
<td>6. Spotted Towhees and possible hybrids</td>
<td>Dan Small</td>
</tr>
</tbody>
</table>

Note that the official museum database and specimen tag abbreviation for the Smithsonian is “USNM,” based on its original name, United States National Museum.

2. Attendees

Committee members in attendance were: Patty Craig, Jared Fisher, Matt Hafner, Clive Harris, Nancy Magnusson, Dan Small, Sherman Suter, Bill Hubick (Chair), Phil Davis (Secretary). Mikey and Jo Anna Lutmerding were also invited to attend and participate.

3. Skins Studies

3.1 General

We began the workshop at 10:00 am. We began with introductory comments from Phil Davis and then an overview of logistics from our host Dave Bridge. Based on this exceptional year for Eurasian shorebirds, the committee planned a special Eurasian shorebird-themed workshop.
Photo 3.1-1. Committee members studying skin specimens. Left to right: Phil Davis, Patty Craig, Clive Harris, Sherman Suter, Bill Hubick, Mikey Lutmerding, Nancy Magnusson. Photo by David Bridge.
Photo 3.1-2. Committee members studying Great Knot and Red Knot specimens. Left to right: Jared Fisher, Bill Hubick. Photo by Phil Davis.

Photo 3.1-3. Committee members studying Eastern Towhee and Spotted Towhee specimens. Left to right: Nancy Magnusson, Sherman Suter, Dan Small, Bill Hubick. Photo by Phil Davis.
Photo 3.1-4. Matt Hafner presents key field marks for Dunlin subspecies. Photo by Phil Davis.
3.2 Juvenile Sharp-tailed Sandpiper (*Calidris acuminata*) vs. Pectoral Sandpiper (*Calidris melanotos*)

Account by Bill Hubick

3.2.1 Background

Sharp-tailed Sandpiper is a rare but regular vagrant to the East Coast. The species was voted #7 in “Maryland’s Next 10 Bird Species,” written by Matt Hafner and me in July 2009. This was by far the highest ranked shorebird species by Maryland birders, followed distantly by Bar-tailed Godwit (#20), Pacific Golden-Plover (#24), Black-tailed Godwit (#25), and Snowy Plover (#28). We summarized as follows, “Sharp-tailed Sandpiper received nearly three times the votes of the next most popular shorebird, Bar-tailed Godwit. There are two accepted records each for Delaware and New Jersey, as well as four records for Virginia. As noted by Marshall Iliff in 2001, a record from the Hunting Creek mudflats, Fairfax, Virginia (14-23 Sep 1983) probably flew over Maryland waters of the Potomac River. As summarized by Iliff, most of the 15+ records from the East Coast have been juveniles concentrated between mid-September and mid-October. Other records from May to August show that this species should be considered at all times during migration. Delaware’s two records were adults found at Bombay Hook on 8 Aug 1993 and 5-6 August 2002.”

We focused our efforts on reviewing juvenile Sharp-tailed and Pectoral Sandpipers collected in September.

3.2.2 Findings

I always like to start by looking at the full trays of specimens to note any obvious differences in overall impression. The differences were striking, with Pectorals showing heavily streaked breasts with fine demarcations, and Sharp-tailed Sandpipers showing a warm, buffy suffusion of color that faded much more gradually into the belly. Overall plumage of the juvenile Pectoral Sandpipers was colder and less rufous than in the Sharp-tailed Sandpipers. We also noted the obvious size differences between ages and sexes, which are well-known especially in Pectoral Sandpiper.

The buffy suffusion of color in Sharp-tailed Sandpiper never approached the dense, heavy streaking of Pectorals. Even in the more heavily marked juvenile Sharp-tailed Sandpipers, the streaks themselves were very thin. We also noted that the white throat on the juvenile Sharp-tailed Sandpipers stood out much more noticeably and consistently than on the Pectoral Sandpipers.

Sharp-tailed Sandpipers are known for their rich chestnut crowns. Claudia Wilds was quoted as having said of Sharp-tailed Sandpipers, “look for the shorebird with a Chipping Sparrow head.” While certainly present in Sharp-tailed Sandpipers, our Pectoral Sandpiper specimens had chestnut crowns as well. In contrasting them, we agreed that Sharp-tailed crowns were a brighter chestnut color, but also that the blackish streaks were much thinner, which meant there was more of the chestnut color in the crown.

Finally, a comparison of bill size found Sharp-tailed Sandpiper bills to be much more delicate than on Pectoral Sandpipers.
Photo 3.2.2-1. A tray of Juvenile Pectoral Sandpipers. All photos in section by Bill Hubick.

Photo 3.2.2-2. A tray of juvenile Pectoral Sandpipers.
Photo 3.2.2-3. A tray of juvenile Sharp-tailed Sandpipers.

Photo 3.2.2-4. A tray of juvenile Sharp-tailed Sandpipers.
Photo 3.2.2-5. Juvenile Pectoral Sandpipers (ventral view).

Photo 3.2.2-6. Juvenile Sharp-tailed Sandpipers (ventral view).
Photo 3.2.2-7. A dorsal comparison of juvenile Pectoral Sandpipers (left) and Sharp-tailed Sandpipers (right).

Photo 3.2.2-8. Juvenile Sharp-tailed Sandpipers.
Photo 3.2.2-9. Juvenile Sharp-tailed Sandpipers.

Photo 3.2.2-10. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. Top and third birds are Sharp-tailed Sandpipers. Second and bottom are Pectoral Sandpipers.
Photo 3.2.2-11. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. Top and third birds are Sharp-tailed Sandpipers. Second and bottom are Pectoral Sandpipers.

Photo 3.2.2-12. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. Top and third birds are Sharp-tailed Sandpipers. Second and bottom are Pectoral Sandpipers.
A gallery of higher resolution Sharp-tailed and Pectoral Sandpiper images is available at https://plus.google.com/u/0/photos/108685809044381197070/albums/5868006266855490625

3.2.3 Summary

Although Maryland lacks ideal access to its best shorebird hotspots, it is just a matter of time before a careful observer detects Maryland's first Sharp-tailed Sandpiper. It is easily among the most expected new shorebird species likely to be added to the state list. Under normal to good viewing conditions, identification should be straightforward using the field marks described here.
3.3 Wood Sandpiper (*Tringa glareola*) vs. Solitary Sandpiper (*Tringa solitaria*)

Account by Nancy Magnuson

3.3.1 Background

Wood Sandpiper, a Eurasian species and a regular visitor to Alaska, has now been documented three times from coastal regions of the eastern US:

- New York, Westchester County: 2-5 November 1990,
- Delaware, Prime Hook National Wildlife Refuge: 7-17 May 2008, and

The possibility exists that Maryland could get its first Wood Sandpiper record during either spring or fall migration. The committee decided to compare Wood and Solitary sandpipers to come up with several plumage/structural field marks that can be used to help distinguish the two in the field. The intent is not to go into great detail about these marks, but, rather, to describe them in an easily understood manner.

3.3.2 Findings

Overall, Solitary Sandpiper appears darker above than Wood. This is largely due to the more extensive white fringing/notching of the back feathers and wing coverts of the Wood Sandpiper. Because of this, the Wood seems “checkered”, while the more subdued markings of the Solitary result in a “dotted” look (see Photos 3.3.2-1 through 3.3.2-3).

One of the most obvious differences between the two is the pattern of the rump and tail (see Photo 3.3.2-4). Wood Sandpipers have a white rump and upper tail; the lower tail is white with dark bars. In contrast, the Solitary has a dark rump, dark central tail feathers, and barred outer tail feathers. These field marks are readily observed in flight.

A mark for Wood Sandpiper that shows up surprisingly often (and well) in a search of flight photos is the prominent, bright white shaft of the outer primary (see Photos 3.3.2-5 and 3.3.2-6). In Solitary Sandpiper this shaft is paler than the rest of the feather, but it blends in and does not stand out.

Facial patterns of the two species also differ, but these did not show up well on the prepared specimens we examined. The Wood Sandpiper has a broad, white supercilium and a dark (mostly preocular) eye line; the Solitary Sandpiper has a noticeable eye ring.

The structural differences of the legs and feet may also be useful. Legs are a little longer and more robust in the Wood Sandpiper than in the Solitary; the feet are also more robust. In flight, the entire foot extends beyond the tail in the Wood versus only the toes of the Solitary (see Photos 3.3.2-6 and 3.3.2-7).
Photo 3.3.2-1. Wood Sandpiper – dorsal view.

Photo 3.3.2-2. Solitary Sandpiper – dorsal view.
Photo 3.3.2-3. Backs: Wood Sandpiper (left) and Solitary Sandpiper (right). Photos in this section by Nancy Magnusson and Patty Craig unless otherwise specified.

Photo 3.3.2-4. Rump patterns of Wood Sandpiper (above) and Solitary Sandpiper (below).
Photo 3.3.2-5. White outer primary shaft of Wood Sandpiper.

Photo 3.3.2-6. Note the white primary shaft, foot extension and white rump visible on this Wood Sandpiper. Photo courtesy of Jeffrey Gordon.
Photo 3.3.2-7. Foot extension: Wood Sandpiper (above) and Solitary Sandpiper (below). Note the heftier appearance and greater extension past the tail on the Wood Sandpiper.

3.3.3 Summary

The following table summarizes the selected field marks:

<table>
<thead>
<tr>
<th></th>
<th>Wood Sandpiper</th>
<th>Solitary Sandpiper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper parts</td>
<td>“Checkered”</td>
<td>“Dotted” – appears darker</td>
</tr>
<tr>
<td>Rump</td>
<td>White</td>
<td>Dark</td>
</tr>
<tr>
<td>Outer primary shaft</td>
<td>Prominent, white</td>
<td>Not easily noticed</td>
</tr>
<tr>
<td>Facial pattern</td>
<td>Broad, light supercilium obscures eye ring; dark eyeline</td>
<td>Obvious eye ring</td>
</tr>
<tr>
<td>Foot extension</td>
<td>Feet extend beyond tail; “sturdy” feet</td>
<td>Toes extend beyond tail; feet less substantial</td>
</tr>
</tbody>
</table>

These differences are relatively to see on living birds; you are encouraged to view the many photos available on-line and in the various shorebird books and field guides. Note that Lesser Yellowlegs also shares similarities with Wood Sandpiper and must be considered.
3.4 Common Ringed Plover (*Charadrius hiaticula*) vs. Semipalmated Plover (*C. semipalmatus*)

Account by Clive Harris

3.4.1 Background

Although primarily a Eurasian species, the Common Ringed Plover (*Charadrius hiaticula*) breeds as close to our area as Baffin Island, Ellesmere Island, and Greenland. It has, however, only rarely been recorded on the East Coast, most likely because of the difficulty of separating it from Semipalmated Plover (*C. semipalmatus*). There are two accepted records from Massachusetts and one each from Rhode Island, Maine, and New York (per the 15th report of the Massachusetts Avian Records Committee, Matthew P. Garvey and Marshall J. Iliff). In addition, four birds—three adults and one juvenile—were recorded in an influx in Newfoundland in 2006 (“An influx of Common Ringed Plovers in southern Newfoundland in autumn 2006”, Clarke and Brown, North American Birds Volume 61, Number 1).

Common Ringed Plovers occurring in Canada and Greenland are sometimes distinguished as the subspecies *psammodroma* (*Shorebirds of North America, Europe and Asia*, Richard Chandler). Nominate *hiaticula* occurs in Western Europe, with *tundrae* from N. Scandinavia east to Alaska.

Calls are diagnostic, as is foot webbing: Common Ringed shows no webbing between the inner and middle toes and limited webbing between middle and outer toes. Common Ringed is larger and paler and lacks a distinct eye ring in most plumages. The literature notes that *tundrae* is smaller and darker than nominate and hence more similar to Semipalmated, with *psammodroma* perhaps intermediate. Common Ringed Plovers have larger breast bands, although there should be caution in using this in the field given how this can change in appearance with the posture of the bird. Adult male Common Ringed Plovers show a distinct supercilium and have a larger and pointed white frontal patch. Juvenile Semipalmated Plovers show more extensive white on the gape. Common Ringed Plovers have a longer and more slender bill.

3.4.2 Findings

During the workshop, we compared adult male and juvenile specimens of Common Ringed Plover and Semipalmated Plover. For the adult males, the Common Ringed Plovers were from Greenland and Canada, presumably representing the *psammodroma* subspecies. Due to the preparation of the specimens, it was not possible to evaluate all field marks, especially the eye ring and palmations, as well as the pattern of the spread wings.
Photo 3.4.2-1. Male Common Ringed (left) and Semipalmated Plovers (right).
Photos by Clive Harris

Photo 3.4.2-1 shows how Common Ringed Plovers average noticeably larger than Semipalmated and appear paler as well. There was some slight difference in the timing of collection of the specimens (May for Semipalmated and June for Common Ringed) but this should not have account for the paler appearance of the Common Ringed Plovers.

Photos 3.4.2-2 and 3.4.2-3 compare the heads of these specimens on a side-on profile. The difference in bill shape is apparent with Semipalmated averaging blunter bills that are thicker at the base. Common Ringed Plovers have more evenly thick, slender bills. Other differences that are apparent are that Common Ringed Plovers have a more extensive white supercilium behind the eye (completely lacking on some Semipalmated) and more extensive black markings on the cheeks. On Semipalmated, the white frontal patch has a tendency to end in a vertical line distinct from the eye.
Photo 3.4.2-2. Male Semipalmated Plovers in profile.

Photo 3.4.2-3. Male Common Ringed Plovers in profile.
When comparing the underside of these species, the difference in the thickness of the breast band is readily apparent (see Photo 3.4.2-4). As noted earlier there needs to be some caution in using this as a field mark on live birds as the posture of the bird in question might impact the apparent thickness of the breast band. On Common Ringed Plovers, the black projects forward onto the lower throat although this might not be noticeable in the field.

![Photo 3.4.2-4. Male Common Ringed and Semipalmated Plovers from below: Common Ringed are four left-hand specimens. Photo by Jared Fisher](image)

We also compared specimens of juvenile Common Ringed and Semipalmated Plovers. The specimens of the former were from Europe. The preparation of the specimens meant that the feathering at the gape was somewhat disturbed and made it hard to evaluate this field mark. The photos below do show that to some extent Semipalmated Plovers have a tendency to show more white at the gape.
Photo 3.4.2-5. Juvenile Semipalmated Plovers in profile.

Photo 3.4.2-6. Juvenile Common Ringed Plovers in profile.
Some authorities also contend that Common Ringed show more distinct markings on the upper parts feathers in juvenile plumage. There is some evidence for this in the specimens we compared. The Semipalmated Plovers show only a distinct terminal pale fringe to the mantle, scapulars and wing coverts, whereas on the Common Ringed plovers there is a dark subterminal line that is as distinct as the pale terminal fringe. However we did not compare a large number of specimens to determine the validity of this field mark.

3.4.3 Summary

Although there are no records of Common Ringed Plover from Maryland, it is a possible vagrant and should be looked for in late summer and fall at sites where shorebirds congregate. Likely candidates can be located by a combination of larger size, paler upperparts, and larger breast band. Adult males have a distinct white supercilium and larger and more pointed white frontal patch. Juveniles can be distinguished with care by good views of the amount of white on the gape. Securing the ID will likely need good views to establish whether an eye ring is present, differences in bill structure, and the extent of palmations on the feet. A good description of, or better still, a recording, of the call of the bird in question should clinch it. However an excellent series of photos could well convince a records committee!

3.5 Notes on the four godwit species

Account by Sherman Suter

3.5.1 Background

Two species of godwits—Marbled Godwit (*Limosa fedoa*) and Hudsonian Godwit (*L. haemastica*)—are rare but regular migrants in Maryland, particularly in the fall. Marbled are more frequently encountered (and a few winter along the coast), but are rare enough in western Maryland to remain on the review list there. The other two godwits have yet to be documented in Maryland or the District of Columbia, though both received enough votes to finish in the top 25 species in Hafner and Hubick’s 2009 consideration of “Maryland's Next Ten Bird Species.” Along the Atlantic coast of the U.S., Bar-tailed (*L. lapponica*) is a very rare migrant and Black-tailed (*L. limosa*) is casual. Both species have been recorded from most nearby coastal states, with a Black-tailed present at Chincoteague NWR, VA the winter of 2012–2013. Editor note: A Bar-tailed Godwit has been present at Chincoteague NWR from August 2013 until now (late September 2013).

The criteria for distinguishing among the four godwits are well-established and generally well-summarized in most field guides. But given the shorebird focus of this year’s MD/DCRC Skins Workshop, it seemed worth examining specimens to refresh our memories of the diagnostic traits (and of possible pitfalls).

3.5.2 Findings

Unfortunately—although perhaps understandably, given that godwits are large to very large shorebirds—the NMNH collection does not provide complete sampling of ages, sexes, and subspecies. So I was unable, for example, to compare similarly aged birds across all taxa. After a quick survey of the drawers, I focused on basic-plumaged birds—there were very few juveniles, and most East Coast godwits are not found in alternative plumages. Wing patterns are diagnostic for all four species across all plumages, so it is regrettable the collection includes only a scattering of spread-wing specimens. So I will simply mention a few points to keep in mind and then briefly summarize crucial field marks that will sort out the species.
Basic-plumage Marbled and Bar-tailed, the two heavier species, have patterned upperparts (see Photos 3.5.2-1). Marbled Godwits are buffy brown, mottled (sometimes seemingly barred) with black. Bar-tailed is streaked above and lacks cinnamon tones. Juvenile Marbled resemble basic-plumage birds but have less patterned coverts; the species molts out of juvenile plumage relatively early. In juvenile Bar-tailed, neat buff spots on the edges of scapulars and tertials produce a checkered pattern (diagnostic for the species). In all plumages of Bar-tailed, when the birds are actively feeding, the barred tail can usually be noted. Even if only viewed in silhouette, the Bar-tailed’s short legs (especially, short tibia) should be noticeable (in flight, the toes extend only slightly beyond the tip of the tail).

Basic-plumaged Hudsonian and Black-tailed, the two lighter species, have plain, unpatterned backs (see Photos 3.5.2-2). Black-tailed Godwits are larger, stockier and have longer legs; heavier, nearly straight bills; and a short supercilium (mostly restricted to above and in front of the eye). Hudsonian Godwits have slightly upturned bills and a longer, more prominent supercilium. Juvenile Black-tailed Godwits have head, neck, and breast tinged (weakly to strongly) with cinnamon-buff and pale fringes, and black subterminal spots on the wing coverts produce a coarsely spotted appearance to the upperparts. Juvenile Hudsonian Godwits have a more gray-brown tinge to head, neck, and breast, and their upperparts appear more streaked. (It is worth remembering that pre-basic molts in Hudsonian are not completed until the birds are on their wintering grounds, so the birds we see retain aspects of alternative or juvenile plumages.)

Bar-tailed Godwits of the nominate subspecies (the expected subspecies in eastern North America) have a white rump that extends in a wedge up the lower back (see Photos 3.5.2-3). However, there is a Massachusetts record of *baueri* (breeds in Siberia and Alaska), which has a heavily mottled or barred rump and lower back.

Marbled is the largest and heaviest species and Hudsonian generally the smallest and lightest. Bar-taileds are heavier than Black-taileds, but have noticeably shorter legs than the other three species. But one must consider the effects of intraspecific variation including sexual dimorphism (females in all species are on average larger, heavier, and longer-billed than males) and differences among subspecies (*melanuroides* Black-taileds, from eastern Asia, are close to as small or smaller than Hudsonian).
Photo 3.5.2-2. Black-tailed (above) and Hudsonian Godwits (below) in basic plumage.

Photo 3.5.2-3. Nominate Bar-tailed Godwit subspecies, showing the white wedge from the tail up the lower back.
3.5.3 Summary

The relative uncommonness of godwits in Maryland and DC means than any individual is worth a careful look. With decent views, birders should have little trouble distinguishing among the four species. If an identification of a bird on the ground remains uncertain, one can hope that it takes flight as wing patterns alone are diagnostic. The relatively broad wings of Marbled show cinnamon underwings and cinnamon on primaries and secondaries. Bar-tailed have plain upperwings with white ([*lapponica*]) or grayish [gray-brown with white barring] ([*baueri*]) wing linings. Black-tailed have a wide and extensive white wing bar above and white wing-linings. Hudsonian have a narrower and fainter wing bar above and, unique among godwits, black wing-linings below.

3.6 Eurasian Woodcock ([*Scolopax rusticola*]) vs. American Woodcock ([*Scolopax minor*])

Account by Patty Craig

3.6.1 Background

The Eurasian Woodcock ([*Scolopax rusticola*]) is an Old World species with a stable population. Its range is the temperate and subarctic regions of Europe and Asia. A portion of the population on some Atlantic Islands is non-migratory; however, the majority of the species is highly migratory. American Woodcock ([*Scolopax minor*]) populate the eastern portions of the United States and southern Canada. Areas of the southeastern United States have woodcock year round even though the American Woodcock is also highly migratory.

Eurasian Woodcock are on the American Birding Association checklist, so in this era of wandering Eurasian shorebirds finding a Eurasian Woodcock in Maryland is a possibility. Both species breed and occupy moist woodlands moving to wet fields to forage at dusk. If a stray Eurasian Woodcock were found, it might be found in one of these habitats with American Woodcock.

3.6.2 Findings

During the MD/DCRC skins workshop at the National Museum of Natural History, we compared American Woodcock with Eurasian Woodcock. Males and females are externally identical within both woodcock species; therefore, we compared one mixed gender tray of each species. The plumage of the upper parts of both species is a very intricate camouflage pattern of rust, dark brown, gray, and buff. It is not readily apparent that the patterns are different except that the American Woodcock has a distinct gray “V” on the mantle. This feature is shared with some Eurasian Woodcock, but it is not as pronounced—not as broad or well defined.

The striking differences in the two species are the size and under parts plumage coloration. The Eurasian Woodcock is significantly larger. It measures between 330-350 mm long and is heavily built, while American Woodcock measures 265-295 mm and is much slighter. The under parts including breast, belly, flanks, and undertail coverts on the American Woodcock are a plain orange-buff. The plumage in corresponding areas on the Eurasian Woodcock is buff heavily barred with dark brown.
Photo 3.6.2-1. Dorsal view of Eurasian Woodcock (top) and American Woodcock (bottom) showing similar patterning. Photos by Patty Craig.

Photo 3.6.2-2. Ventral view of Eurasian Woodcock (top) and American Woodcock (bottom) exhibiting contrasting plumage and size differences.
3.6.3 Summary

A solitary woodcock found feeding in deep grass might present an identification challenge, but observing the underparts or having a size comparison makes the separation of Eurasian and American Woodcocks a straightforward process.

3.7 Variation in Amount of White Spotting on Eastern Towhees (*Pipilo erythrophthalmus*)

Account by Dan Small

3.7.1 Background

Eastern Towhees (*Pipilo erythrophthalmus*) along the East Coast occasionally have white spots or streaks on their scapulars and median and/or greater coverts. There has been a long history of debate whether these individuals are pure Eastern Towhees with a few aberrant feathers or are hybrids with a mix of Spotted Towhee (*Pipilo maculatus*) and Eastern Towhee genes.

An interesting Towhee was collected by a Mr. P. L. Jouy in Washington, DC on May 4, 1875 and presented to Elliott Coues. Jouy asked Coues to make note of its “peculiarities” and publish his finding in the Bulletin of the Nuttall Ornithological Club quarterly journal. Coues (1878) stated, “the outer scapulars are distinctly and strongly marked, near the end of the outer webs, with streaks of pure white” (see Photos 3.7.2-1, 3.7.2-2, and 3.7.2-3). At the time, Spotted Towhee and Eastern Towhee were considered one species and Coues believed that this specimen and another one shot by Jouy provided strong evidence against their separation into two species.

This interesting record was brought to the attention of Phil Davis (Secretary, MD/DCRC), during an historical canvass. The specimen was tracked down in the bird collection at the Smithsonian Institution in Washington, DC. The specimen was photographed and a request was posted to the ID-Frontiers list for opinions on the bird’s identification. Several experts answered the request and opinions ranged from hybrid to aberrant Eastern Towhee. During the 2013 MD/DCRC skins workshop, we took another look at the specimen and made comparisons to Eastern Towhees collected from the Atlantic coast states (ranging from Georgia to Massachusetts) and Spotted Towhees of several subspecies. After reviewing the 1875 specimen collected by Mr. Jouy, other members of the MD/DCRC and I determined that this specimen is either a hybrid Eastern x Spotted Towhee or an aberrant Eastern Towhee with some additional white in the scapulars rather than a vagrant Spotted Towhee.

There is a small area where these two species ranges make contact in the Great Plains where many hybrids are reported. Sibley (1959) examined 515 adult specimens collected in the 1950s throughout the Great Plains in southern Manitoba, North and South Dakota, Nebraska, and Colorado to determine the degree of secondary intergradation between races (at the time) of *P. e. erythrophthalmus* and *P. e. arcticus*. They excluded eastern birds found far from the Plains that had additional white feathers as they suggest that the spotting may be due to “ancestral” genes or to recurrent mutations which are favored by selection in local habitats. Sibley (2000) also describes Eastern Towhees that can have white in the scapulars and secondary coverts along the east coast.
3.7.2 Findings

Below are photos and brief descriptions showing the range in variation of white spotting found on Eastern Towhees and typical Spotted Towhees of the subspecies *P. m. montanus* and *P. m. oreganus*. We examined three drawers of male Eastern Towhees collected in May from the Northeast, Mid-Atlantic, and Southeastern states. In both the Mid-Atlantic and Southeast drawer, we found four individuals that had white streaking in the scapulars or spotting on the median and/or greater coverts. These individuals looked like typical Eastern Towhees in every other regard. Interestingly, while studying the Northeast drawer of about 35 specimens, not one had any additional white markings. One individual (see Photo 3.7.2-15) in the southeastern drawer stood out with an exceptional amount of white in the scapulars and coverts, approaching some little marked Spotted Towhees. Presumably misplaced, this bird was from Nebraska, near the hybrid zone. It was regarded as a possible hybrid as it showed much more intermediate traits between the two species. We found another possible hybrid with intermediate characteristics and, interestingly, the individual was also collected in the Midwest, in South Dakota (see Photo 3.7.2-16).

All Eastern Towhees examined and the individuals photographed below had typical white markings in the primaries (i.e., white base of the primaries extending beyond the primary coverts), including the potential hybrids from Nebraska and South Dakota. In addition, there is a photo of an Eastern Towhee banded at Foreman’s Branch Bird Observatory, on April 4, 2013, showing three greater coverts on the right wing with a white spot on the terminal end.

Photo 3.7.2-1. USNM 124573 *Pipilo erythrophthalmus erythrophthalmus*. Washington, DC. 4 May 1875. Showing a lateral view of the white scapulars and the base of the primaries with white extending past the primary coverts.
Photo 3.7.2-2. USNM 124573 *Pipilo erythrophthalmus erythrophtalmus*. Washington DC, 4 May 1875. Ventral view showing the large amount of white in rectrix 6 (outer tail feather).

Photo 3.7.2-3. USNM 124573 *Pipilo erythrophthalmus erythrophtalmus*. Washington DC. 4 May 1875. Dorsal view of the outer scapulars with white on the leading edge.

Eastern Towhee specimens were collected in the Mid-Atlantic region. They are included to show some of the range of white streaking on the scapulars and/or white spotting on the terminal ends of the median and greater coverts.
Photo 3.7.2-4. *Pipilo erythrophthalmus*. Washington DC, 6 May 1888. Three white spots on median greater coverts and one white spot on a lesser covert.

Photo 3.7.2-5. *Pipilo erythrophthalmus*. USNM 87666. Laurel, Maryland. 20 May 1982. Two white spots on left wing median coverts and one white spot on right wing median coverts. Some white on leading edge of greater coverts.
Photo 3.7.2-6. *Pipilo erythrophthalmus*. USNM 532234. South Falls Church, VA, 5 May 1969. Three to four outer scapulars with a white streak on the leading edge.

The next four photographs of Eastern Towhee specimens were collected in the Southeastern US. They are included to show some of the range of white streaking on the scapulars and/or white spotting on the terminal ends of the median and greater coverts.
Photo 3.7.2-8. *Pipilo erythrophthalmus*. USNM 626425. Tyndall AFB, Florida. 27 April 2001. White tipping on two outer median coverts on the left wing, one median covert with a white tip on the right wing.

Photo 3.7.2-10. *Pipilo erythrophthalmus*. USNM 222348. Christchurch Parish, South Carolina. Outer three greater coverts on the right wing with white tipping, left wing was missing these coverts.

Photo 3.7.2-11. *Pipilo erythrophthalmus*. USNM 222349. Christchurch Parish, South Carolina. Two outer median coverts on the left wing with white tipping, median coverts on the right wing without white tipping.

The bird below (see Photos 3.7.2-12), was caught during regular spring migration banding at Foreman’s Branch Bird Observatory, located on the Eastern Shore of Maryland in northern Queen Anne’s County just outside of Kingstown. It was banded on April 4, 2013.
Photo 3.7.2-12. *Pipilo erythrophthalmus*. Foreman’s Branch Bird Observatory, Kingstown, Maryland. 4 April 2013. Three greater coverts with white tipping on the leading edge.

The next two birds (see Photos 3.7.2-15 and 3.7.2-16) show more intermediate traits between Eastern and Spotted Towhees. Both are labeled *Pipilo erythrophthalmus*, one collected from Nebraska and the other from Yankton, SD. Both have a greater amount of streaking on the scapulars and/or white tipping to the median and greater coverts than any of the other birds we reviewed.
Photo 3.7.2-16. *Pipilo erythrophthalmus*. USNM 528579. Yankton, South Dakota. 3 June 1965. Extensive white streaking on the outer edge of the scapulars and extensive white tipping on the median and greater coverts. Typical white patch extending beyond the primary coverts as seen on Easterns.

3.7.3 References

4. Adjournment
The workshop ended at 3:30 pm.

Photo 4-1. Members taking a lunch break in the Richmond Library or similar. Clockwise: Clive Harris, Patty Craig, Dan Small, Bill Hubick, Jared Fisher, David Bridge, Matt Hafner. Photo by Phil Davis.

5. Acknowledgements
Many thanks to the species account authors. Special thanks to Dave Bridge for hosting us and for exceptional support to MD/DCRC.

Respectfully submitted,

Bill Hubick, Chair
Pasadena, MD 21122
bill_hubick@yahoo.com

Phil Davis, Secretary
Davidsonville, MD 21035
p_davis@ix.netcom.com

15 Dec 2013
Maryland Ornithological Society

Maryland / District of Columbia Records Committee
Skins Workshop
13 April 2013

Edited by Bill Hubick, MD/DCRC Chair

1. General

On 13 April 2013, the Maryland/District of Columbia Records Committee (MD/DCRC) held its annual Skins Workshop at the Division of Birds, National Museum of Natural History (NMNH), Smithsonian Institution, Washington, DC. Our host was Dave Bridge. The committee thanks Dave for sharing his time and insights and for his continued support to the MD/DCRC.

The agenda and taxa to be reviewed during the workshop (and species account author) included the following:

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Juvenile Sharp-tailed vs. Pectoral Sandpipers</td>
<td>Bill Hubick</td>
</tr>
<tr>
<td>2. Wood Sandpiper vs. Solitary Sandpiper</td>
<td>Nancy Magnusson</td>
</tr>
<tr>
<td>3. Common Ringed Plover vs. Semipalmated Plover</td>
<td>Clive Harris</td>
</tr>
<tr>
<td>4. Notes on the four godwit species</td>
<td>Sherman Suter</td>
</tr>
<tr>
<td>5. Eurasian Woodcock vs. American Woodcock</td>
<td>Patty Craig</td>
</tr>
<tr>
<td>6. Spotted Towhees and possible hybrids</td>
<td>Dan Small</td>
</tr>
</tbody>
</table>

Note that the official museum database and specimen tag abbreviation for the Smithsonian is “USNM,” based on its original name, United States National Museum.

2. Attendees

Committee members in attendance were: Patty Craig, Jared Fisher, Matt Hafner, Clive Harris, Nancy Magnusson, Dan Small, Sherman Suter, Bill Hubick (Chair), Phil Davis (Secretary). Mikey and Jo Anna Lutmerding were also invited to attend and participate.
3. Skins Studies

3.1 General
We began the workshop at 10:00 am. We began with introductory comments from Phil Davis and then an overview of logistics from our host Dave Bridge. Based on this exceptional year for Eurasian shorebirds, the committee planned a special Eurasian shorebird-themed workshop.

Photo 3.1-1. Committee members studying skin specimens. Left to right: Phil Davis, Patty Craig, Clive Harris, Sherman Suter, Bill Hubick, Mikey Lutmerding, Nancy Magnusson. Photo by David Bridge.
Photo 3.1-2. Committee members studying Great Knot and Red Knot specimens. Left to right: Jared Fisher, Bill Hubick. Photo by Phil Davis.

Photo 3.1-3. Committee members studying Eastern Towhee and Spotted Towhee specimens. Left to right: Nancy Magnusson, Sherman Suter, Dan Small, Bill Hubick. Photo by Phil Davis.
Photo 3.1-4. Matt Hafner presents key field marks for Dunlin subspecies. Photo by Phil Davis.
3.2 Juvenile Sharp-tailed Sandpiper (*Calidris acuminata*) vs. Pectoral Sandpiper (*Calidris melanotos*)

Account by Bill Hubick

3.2.1 Background

Sharp-tailed Sandpiper is a rare but regular vagrant to the East Coast. The species was voted #7 in “Maryland’s Next 10 Bird Species,” written by Matt Hafner and me in July 2009. This was by far the highest ranked shorebird species by Maryland birders, followed distantly by Bar-tailed Godwit (#20), Pacific Golden-Plover (#24), Black-tailed Godwit (#25), and Snowy Plover (#28). We summarized as follows, “Sharp-tailed Sandpiper received nearly three times the votes of the next most popular shorebird, Bar-tailed Godwit. There are two accepted records each for Delaware and New Jersey, as well as four records for Virginia. As noted by Marshall Iliff in 2001, a record from the Hunting Creek mudflats, Fairfax, Virginia (14-23 Sep 1983) probably flew over Maryland waters of the Potomac River. As summarized by Iliff, most of the 15+ records from the East Coast have been juveniles concentrated between mid-September and mid-October. Other records from May to August show that this species should be considered at all times during migration. Delaware’s two records were adults found at Bombay Hook on 8 Aug 1993 and 5-6 August 2002.”

We focused our efforts on reviewing juvenile Sharp-tailed and Pectoral Sandpipers collected in September.

3.2.2 Findings

I always like to start by looking at the full trays of specimens to note any obvious differences in overall impression. The differences were striking, with Pectorals showing heavily streaked breasts with fine demarcations, and Sharp-tailed Sandpipers showing a warm, buffy suffusion of color that faded much more gradually into the belly. Overall plumage of the juvenile Pectoral Sandpipers was colder and less rufous than in the Sharp-tailed Sandpipers. We also noted the obvious size differences between ages and sexes, which are well-known especially in Pectoral Sandpiper.

The buffy suffusion of color in Sharp-tailed Sandpiper never approached the dense, heavy streaking of Pectorals. Even in the more heavily marked juvenile Sharp-tailed Sandpipers, the streaks themselves were very thin. We also noted that the white throat on the juvenile Sharp-tailed Sandpipers stood out much more noticeably and consistently than on the Pectoral Sandpipers.

Sharp-tailed Sandpipers are known for their rich chestnut crowns. Claudia Wilds was quoted as having said of Sharp-tailed Sandpipers, “look for the shorebird with a Chipping Sparrow head.” While certainly present in Sharp-tailed Sandpipers, our Pectoral Sandpiper specimens had chestnut crowns as well. In contrasting them, we agreed that Sharp-tailed crowns were a brighter chestnut color, but also that the blackish streaks were much thinner, which meant there was more of the chestnut color in the crown.

Finally, a comparison of bill size found Sharp-tailed Sandpiper bills to be much more delicate than on Pectoral Sandpipers.
Photo 3.2.2-1. A tray of Juvenile Pectoral Sandpipers. All photos in section by Bill Hubick.

Photo 3.2.2-2. A tray of juvenile Pectoral Sandpipers.
Photo 3.2.2-3. A tray of juvenile Sharp-tailed Sandpipers.

Photo 3.2.2-4. A tray of juvenile Sharp-tailed Sandpipers.
Photo 3.2.2-5. Juvenile Pectoral Sandpipers (ventral view).

Photo 3.2.2-6. Juvenile Sharp-tailed Sandpipers (ventral view).
Photo 3.2.2-7. A dorsal comparison of juvenile Pectoral Sandpipers (left) and Sharp-tailed Sandpipers (right).

Photo 3.2.2-8. Juvenile Sharp-tailed Sandpipers.
Photo 3.2.2-9. Juvenile Sharp-tailed Sandpipers.

Photo 3.2.2-10. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. Top and third birds are Sharp-tailed Sandpipers. Second and bottom are Pectoral Sandpipers.
Photo 3.2.2-11. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. Top and third birds are Sharp-tailed Sandpipers. Second and bottom are Pectoral Sandpipers.

Photo 3.2.2-12. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. Top and third birds are Sharp-tailed Sandpipers. Second and bottom are Pectoral Sandpipers.
Photo 3.2.2-13. Alternating juvenile Pectoral and Sharp-tailed Sandpipers. From left to right: Sharp-tailed, Pectoral, Sharp-tailed, and Pectoral.

A gallery of higher resolution Sharp-tailed and Pectoral Sandpiper images is available at https://plus.google.com/u/0/photos/108685809044381197070/albums/5868006266855490625

3.2.3 Summary

Although Maryland lacks ideal access to its best shorebird hotspots, it is just a matter of time before a careful observer detects Maryland’s first Sharp-tailed Sandpiper. It is easily among the most expected new shorebird species likely to be added to the state list. Under normal to good viewing conditions, identification should be straightforward using the field marks described here.
3.3 Wood Sandpiper (Tringa glareola) vs. Solitary Sandpiper (Tringa solitaria)
Account by Nancy Magnusson

3.3.1 Background

Wood Sandpiper, a Eurasian species and a regular visitor to Alaska, has now been documented three times from coastal regions of the eastern US:

- New York, Westchester County: 2-5 November 1990,
- Delaware, Prime Hook National Wildlife Refuge: 7-17 May 2008, and

The possibility exists that Maryland could get its first Wood Sandpiper record during either spring or fall migration. The committee decided to compare Wood and Solitary sandpipers to come up with several plumage/structural field marks that can be used to help distinguish the two in the field. The intent is not to go into great detail about these marks, but, rather, to describe them in an easily understood manner.

3.3.2 Findings

Overall, Solitary Sandpiper appears darker above than Wood. This is largely due to the more extensive white fringing/notching of the back feathers and wing coverts of the Wood Sandpiper. Because of this, the Wood seems “checkered”, while the more subdued markings of the Solitary result in a “dotted” look (see Photos 3.3.2-1 through 3.3.2-3).

One of the most obvious differences between the two is the pattern of the rump and tail (see Photo 3.3.2-4). Wood Sandpipers have a white rump and upper tail; the lower tail is white with dark bars. In contrast, the Solitary has a dark rump, dark central tail feathers, and barred outer tail feathers. These field marks are readily observed in flight.

A mark for Wood Sandpiper that shows up surprisingly often (and well) in a search of flight photos is the prominent, bright white shaft of the outer primary (see Photos 3.3.2-5 and 3.3.2-6). In Solitary Sandpiper this shaft is paler than the rest of the feather, but it blends in and does not stand out.

Facial patterns of the two species also differ, but these did not show up well on the prepared specimens we examined. The Wood Sandpiper has a broad, white supercilium and a dark (mostly preocular) eye line; the Solitary Sandpiper has a noticeable eye ring.

The structural differences of the legs and feet may also be useful. Legs are a little longer and more robust in the Wood Sandpiper than in the Solitary; the feet are also more robust. In flight, the entire foot extends beyond the tail in the Wood versus only the toes of the Solitary (see Photos 3.3.2-6 and 3.3.2-7).
Photo 3.3.2-1. Wood Sandpiper – dorsal view.

Photo 3.3.2-2. Solitary Sandpiper – dorsal view.
Photo 3.3.2-3. Backs: Wood Sandpiper (left) and Solitary Sandpiper (right). Photos in this section by Nancy Magnusson and Patty Craig unless otherwise specified.

Photo 3.3.2-4. Rump patterns of Wood Sandpiper (above) and Solitary Sandpiper (below).
Photo 3.3.2-5. White outer primary shaft of Wood Sandpiper.

Photo 3.3.2-6. Note the white primary shaft, foot extension and white rump visible on this Wood Sandpiper. Photo courtesy of Jeffrey Gordon.
Photo 3.3.2-7. Foot extension: Wood Sandpiper (above) and Solitary Sandpiper (below). Note the heftier appearance and greater extension past the tail on the Wood Sandpiper.

3.3.3 Summary

The following table summarizes the selected field marks:

<table>
<thead>
<tr>
<th></th>
<th>Wood Sandpiper</th>
<th>Solitary Sandpiper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper parts</td>
<td>“Checkered”</td>
<td>“Dotted” – appears darker</td>
</tr>
<tr>
<td>Rump</td>
<td>White</td>
<td>Dark</td>
</tr>
<tr>
<td>Outer primary shaft</td>
<td>Prominent, white</td>
<td>Not easily noticed</td>
</tr>
<tr>
<td>Facial pattern</td>
<td>Broad, light supercilium</td>
<td>Obscures eye ring; dark eyeline</td>
</tr>
<tr>
<td></td>
<td>“sturdy” feet</td>
<td>Toes extend beyond tail; feet less substantial</td>
</tr>
</tbody>
</table>

These differences are relatively to see on living birds; you are encouraged to view the many photos available on-line and in the various shorebird books and field guides. Note that Lesser Yellowlegs also shares similarities with Wood Sandpiper and must be considered.
3.4 Common Ringed Plover (Charadrius hiaticula) vs. Semipalmated Plover (C. semipalmatus)
Account by Clive Harris

3.4.1 Background

Although primarily a Eurasian species, the Common Ringed Plover (Charadrius hiaticula) breeds as close to our area as Baffin Island, Ellesmere Island, and Greenland. It has, however, only rarely been recorded on the East Coast, most likely because of the difficulty of separating it from Semipalmated Plover (C. semipalmatus). There are two accepted records from Massachusetts and one each from Rhode Island, Maine, and New York (per the 15th report of the Massachusetts Avian Records Committee, Matthew P. Garvey and Marshall J. Iliff). In addition, four birds—three adults and one juvenile—were recorded in an influx in Newfoundland in 2006 (“An influx of Common Ringed Plovers in southern Newfoundland in autumn 2006”, Clarke and Brown, North American Birds Volume 61, Number 1).

Common Ringed Plovers occurring in Canada and Greenland are sometimes distinguished as the subspecies psammodroma (Shorebirds of North America, Europe and Asia, Richard Chandler). Nominate hiaticula occurs in Western Europe, with tundrae from N. Scandinavia east to Alaska.

Calls are diagnostic, as is foot webbing: Common Ringed shows no webbing between the inner and middle toes and limited webbing between middle and outer toes. Common Ringed is larger and paler and lacks a distinct eye ring in most plumages. The literature notes that tundrae is smaller and darker than nominate and hence more similar to Semipalmated, with psammodroma perhaps intermediate. Common Ringed Plovers have larger breast bands, although there should be caution in using this in the field given how this can change in appearance with the posture of the bird. Adult male Common Ringed Plovers show a distinct supercilium and have a larger and pointed white frontal patch. Juvenile Semipalmated Plovers show more extensive white on the gape. Common Ringed Plovers have a longer and more slender bill.

3.4.2 Findings

During the workshop, we compared adult male and juvenile specimens of Common Ringed Plover and Semipalmated Plover. For the adult males, the Common Ringed Plovers were from Greenland and Canada, presumably representing the psammodroma subspecies. Due to the preparation of the specimens, it was not possible to evaluate all field marks, especially the eye ring and palmations, as well as the pattern of the spread wings.
Photo 3.4.2-1 shows how Common Ringed Plovers average noticeably larger than Semipalmated and appear paler as well. There was some slight difference in the timing of collection of the specimens (May for Semipalmated and June for Common Ringed) but this should not have account for the paler appearance of the Common Ringed Plovers.

Photos 3.4.2-2 and 3.4.2-3 compare the heads of these specimens on a side-on profile. The difference in bill shape is apparent with Semipalmated averaging blunter bills that are thicker at the base. Common Ringed Plovers have more evenly thick, slender bills. Other differences that are apparent are that Common Ringed Plovers have a more extensive white supercilium behind the eye (completely lacking on some Semipalmated) and more extensive black markings on the cheeks. On Semipalmated, the white frontal patch has a tendency to end in a vertical line distinct from the eye.
Photo 3.4.2-2. Male Semipalmated Plovers in profile.

Photo 3.4.2-3. Male Common Ringed Plovers in profile.
When comparing the underside of these species, the difference in the thickness of the breast band is readily apparent (see Photo 3.4.2-4). As noted earlier there needs to be some caution in using this as a field mark on live birds as the posture of the bird in question might impact the apparent thickness of the breast band. On Common Ringed Plovers, the black projects forward onto the lower throat although this might not be noticeable in the field.

Photo 3.4.2-4. Male Common Ringed and Semipalmated Plovers from below: Common Ringed are four left-hand specimens. Photo by Jared Fisher

We also compared specimens of juvenile Common Ringed and Semipalmated Plovers. The specimens of the former were from Europe. The preparation of the specimens meant that the feathering at the gape was somewhat disturbed and made it hard to evaluate this field mark. The photos below do show that to some extent Semipalmated Plovers have a tendency to show more white at the gape.
Photo 3.4.2-5. Juvenile Semipalmated Plovers in profile.

Photo 3.4.2-6. Juvenile Common Ringed Plovers in profile.
Some authorities also contend that Common Ringed show more distinct markings on the upper parts feathers in juvenile plumage. There is some evidence for this in the specimens we compared. The Semipalmated Plovers show only a distinct terminal pale fringe to the mantle, scapulars and wing coverts, whereas on the Common Ringed plovers there is a dark subterminal line that is as distinct as the pale terminal fringe. However we did not compare a large number of specimens to determine the validity of this field mark.

3.4.3 Summary

Although there are no records of Common Ringed Plover from Maryland, it is a possible vagrant and should be looked for in late summer and fall at sites where shorebirds congregate. Likely candidates can be located by a combination of larger size, paler upperparts, and larger breast band. Adult males have a distinct white supercilium and larger and more pointed white frontal patch. Juveniles can be distinguished with care by good views of the amount of white on the gape. Securing the ID will likely need good views to establish whether an eye ring is present, differences in bill structure, and the extent of palmations on the feet. A good description of, or better still, a recording, of the call of the bird in question should clinch it. However an excellent series of photos could well convince a records committee!
3.5 Notes on the four godwit species
Account by Sherman Suter

3.5.1 Background

Two species of godwits—Marbled Godwit (*Limosa fedoa*) and Hudsonian Godwit (*L. haemastica*)—are rare but regular migrants in Maryland, particularly in the fall. Marbled are more frequently encountered (and a few winter along the coast), but are rare enough in western Maryland to remain on the review list there. The other two godwits have yet to be documented in Maryland or the District of Columbia, though both received enough votes to finish in the top 25 species in Hafner and Hubick’s 2009 consideration of “Maryland's Next Ten Bird Species.” Along the Atlantic coast of the U.S., Bar-tailed (*L. lapponica*) is a very rare migrant and Black-tailed (*L. limosa*) is casual. Both species have been recorded from most nearby coastal states, with a Black-tailed present at Chincoteague NWR, VA the winter of 2012–2013. Editor note: A Bar-tailed Godwit has been present at Chincoteague NWR from August 2013 until now (late September 2013).

The criteria for distinguishing among the four godwits are well-established and generally well-summarized in most field guides. But given the shorebird focus of this year's MD/DCRC Skins Workshop, it seemed worth examining specimens to refresh our memories of the diagnostic traits (and of possible pitfalls).

3.5.2 Findings

Unfortunately—although perhaps understandably, given that godwits are large to very large shorebirds—the NMNH collection does not provide complete sampling of ages, sexes, and subspecies. So I was unable, for example, to compare similarly aged birds across all taxa. After a quick survey of the drawers, I focused on basic-plumaged birds—there were very few juveniles, and most East Coast godwits are not found in alternative plumages. Wing patterns are diagnostic for all four species across all plumages, so it is regrettable the collection includes only a scattering of spread-wing specimens. So I will simply mention a few points to keep in mind and then briefly summarize crucial field marks that will sort out the species.

Basic-plumage Marbled and Bar-tailed, the two heavier species, have patterned upperparts (see Photos 3.5.2-1). Marbled Godwits are buffy brown, mottled (sometimes seemingly barred) with black. Bar-tailed is streaked above and lacks cinnamon tones. Juvenile Marbled resemble basic-plumage birds but have less patterned coverts; the species molts out of juvenal plumage relatively early. In juvenile Bar-tailed, neat buff spots on the edges of scapulars and tertials produce a checkered pattern (diagnostic for the species). In all plumages of Bar-tailed, when the birds are actively feeding, the barred tail can usually be noted. Even if only viewed in silhouette, the Bar-tailed’s short legs (especially, short tibia) should be noticeable (in flight, the toes extend only slightly beyond the tip of the tail).

Basic-plumaged Hudsonian and Black-tailed, the two lighter species, have plain, unpatterned backs (see Photos 3.5.2-2). Black-tailed Godwits are larger, stockier and have longer legs; heavier, nearly straight bills; and a short supercilium (mostly restricted to above and in front of the eye). Hudsonian Godwits have slightly upturned bills and a longer, more prominent supercilium. Juvenile Black-tailed Godwits have head, neck, and breast tinged (weakly to strongly) with cinnamon-buff and pale fringes, and black subterminal spots on the wing coverts produce a coarsely spotted appearance to the upperparts. Juvenile Hudsonian Godwits have a more gray-brown tinge to head, neck, and breast, and their upperparts appear more streaked. (It is worth remembering that pre-basic molts in Hudsonian are not completed until the birds are
Marbled is the largest and heaviest species and Hudsonian generally the smallest and lightest. Bar-taileds are heavier than Black-taileds, but have noticeably shorter legs than the other three species. But one must consider the effects of intraspecific variation including sexual dimorphism (females in all species are on average larger, heavier, and longer-billed than males) and differences among subspecies (*melanuroides* Black-taileds, from eastern Asia, are close to as small or smaller than Hudsonian).
Photo 3.5.2-2. Black-tailed (above) and Hudsonian Godwits (below) in basic plumage.

Photo 3.5.2-3. Nominate Bar-tailed Godwit subspecies, showing the white wedge from the tail up the lower back.
3.5.3 Summary

The relative uncommonness of godwits in Maryland and DC means than any individual is worth a careful look. With decent views, birders should have little trouble distinguishing among the four species. If an identification of a bird on the ground remains uncertain, one can hope that it takes flight as wing patterns alone are diagnostic. The relatively broad wings of Marbled show cinnamon underwings and cinnamon on primaries and secondaries. Bar-tailed have plain upperwings with white (*lapponica*) or grayish [gray-brown with white barring] (*baueri*) wing linings. Black-tailed have a wide and extensive white wing bar above and white wing-linings. Hudsonian have a narrower and fainter wing bar above and, unique among godwits, black wing-linings below.
3.6 Eurasian Woodcock (*Scolopax rusticola*) vs. American Woodcock (*Scolopax minor*)
Account by Patty Craig

3.6.1 Background

The Eurasian Woodcock (*Scolopax rusticola*) is an Old World species with a stable population. Its range is the temperate and subarctic regions of Europe and Asia. A portion of the population on some Atlantic Islands is non-migratory; however, the majority of the species is highly migratory. American Woodcock (*Scolopax minor*) populate the eastern portions of the United States and southern Canada. Areas of the southeastern United States have woodcock year round even though the American Woodcock is also highly migratory.

Eurasian Woodcock are on the American Birding Association checklist, so in this era of wandering Eurasian shorebirds finding a Eurasian Woodcock in Maryland is a possibility. Both species breed and occupy moist woodlands moving to wet fields to forage at dusk. If a stray Eurasian Woodcock were found, it might be found in one of these habitats with American Woodcock.

3.6.2 Findings

During the MD/DCRC skins workshop at the National Museum of Natural History, we compared American Woodcock with Eurasian Woodcock. Males and females are externally identical within both woodcock species; therefore, we compared one mixed gender tray of each species. The plumage of the upper parts of both species is a very intricate camouflage pattern of rust, dark brown, gray, and buff. It is not readily apparent that the patterns are different except that the American Woodcock has a distinct gray “V” on the mantle. This feature is shared with some Eurasian Woodcock, but it is not as pronounced—not as broad or well defined.

The striking differences in the two species are the size and under parts plumage coloration. The Eurasian Woodcock is significantly larger. It measures between 330-350 mm long and is heavily built, while American Woodcock measures 265-295 mm and is much slighter. The under parts including breast, belly, flanks, and undertail coverts on the American Woodcock are a plain orange-buff. The plumage in corresponding areas on the Eurasian Woodcock is buff heavily barred with dark brown.
Photo 3.6.2-1. Dorsal view of Eurasian Woodcock (top) and American Woodcock (bottom) showing similar patterning. Photos by Patty Craig.

Photo 3.6.2-2. Ventral view of Eurasian Woodcock (top) and American Woodcock (bottom) exhibiting contrasting plumage and size differences.
3.6.3 Summary

A solitary woodcock found feeding in deep grass might present an identification challenge, but observing the underparts or having a size comparison makes the separation of Eurasian and American Woodcocks a straightforward process.
3.7 Variation in Amount of White Spotting on Eastern Towhees (*Pipilo erythrophthalmus*)
Account by Dan Small

3.7.1 Background

Eastern Towhees (*Pipilo erythrophthalmus*) along the East Coast occasionally have white spots or streaks on their scapulars and median and/or greater coverts. There has been a long history of debate whether these individuals are pure Eastern Towhees with a few aberrant feathers or are hybrids with a mix of Spotted Towhee (*Pipilo maculatus*) and Eastern Towhee genes.

An interesting Towhee was collected by a Mr. P. L. Jouy in Washington, DC on May 4, 1875 and presented to Elliott Coues. Jouy asked Coues to make note of its “peculiarities” and publish his finding in the Bulletin of the Nuttall Ornithological Club quarterly journal. Coues (1878) stated, “the outer scapulars are distinctly and strongly marked, near the end of the outer webs, with streaks of pure white” (see Photos 3.7.2-1, 3.7.2-2, and 3.7.2-3). At the time, Spotted Towhee and Eastern Towhee were considered one species and Coues believed that this specimen and another one shot by Jouy provided strong evidence against their separation into two species.

This interesting record was brought to the attention of Phil Davis (Secretary, MD/DCRC), during an historical canvass. The specimen was tracked down in the bird collection at the Smithsonian Institution in Washington, DC. The specimen was photographed and a request was posted to the ID-Frontiers list for opinions on the bird’s identification. Several experts answered the request and opinions ranged from hybrid to aberrant Eastern Towhee. During the 2013 MD/DCRC skins workshop, we took another look at the specimen and made comparisons to Eastern Towhees collected from the Atlantic coast states (ranging from Georgia to Massachusetts) and Spotted Towhees of several subspecies. After reviewing the 1875 specimen collected by Mr. Jouy, other members of the MD/DCRC and I determined that this specimen is either a hybrid Eastern x Spotted Towhee or an aberrant Eastern Towhee with some additional white in the scapulars rather than a vagrant Spotted Towhee.

There is a small area where these two species ranges make contact in the Great Plains where many hybrids are reported. Sibley (1959) examined 515 adult specimens collected in the 1950s throughout the Great Plains in southern Manitoba, North and South Dakota, Nebraska, and Colorado to determine the degree of secondary intergradation between races (at the time) of *P. e. erythrophthalmus* and *P. e. arcticus*. They excluded eastern birds found far from the Plains that had additional white feathers as they suggest that the spotting may be due to “ancestral” genes or to recurrent mutations which are favored by selection in local habitats. Sibley (2000) also describes Eastern Towhees that can have white in the scapulars and secondary coverts along the east coast.
3.7.2 Findings

Below are photos and brief descriptions showing the range in variation of white spotting found on Eastern Towhees and typical Spotted Towhees of the subspecies *P. m. montanus* and *P. m. oreganus*. We examined three drawers of male Eastern Towhees collected in May from the Northeast, Mid-Atlantic, and Southeastern states. In both the Mid-Atlantic and Southeast drawer, we found four individuals that had white streaking in the scapulars or spotting on the median and/or greater coverts. These individuals looked like typical Eastern Towhees in every other regard. Interestingly, while studying the Northeast drawer of about 35 specimens, not one had any additional white markings. One individual (see Photo 3.7.2-15) in the southeastern drawer stood out with an exceptional amount of white in the scapulars and coverts, approaching some little marked Spotted Towhees. Presumably misplaced, this bird was from Nebraska, near the hybrid zone. It was regarded as a possible hybrid as it showed much more intermediate traits between the two species. We found another possible hybrid with intermediate characteristics and, interestingly, the individual was also collected in the Midwest, in South Dakota (see Photo 3.7.2-16).

All Eastern Towhees examined and the individuals photographed below had typical white markings in the primaries (i.e., white base of the primaries extending beyond the primary coverts), including the potential hybrids from Nebraska and South Dakota. In addition, there is a photo of an Eastern Towhee banded at Foreman’s Branch Bird Observatory, on April 4, 2013, showing three greater coverts on the right wing with a white spot on the terminal end.

![Photo 3.7.2-1. USNM 124573 Pipilo erythrophthalmus erythrophthalmus. Washington, DC. 4 May 1875. Showing a lateral view of the white scapulars and the base of the primaries with white extending past the primary coverts.](image-url)
Eastern Towhee specimens were collected in the Mid-Atlantic region. They are included to show some of the range of white streaking on the scapulars and/or white spotting on the terminal ends of the median and greater coverts.
Photo 3.7.2-4. *Pipilo erythrophthalmus*. Washington DC, 6 May 1888. Three white spots on median greater coverts and one white spot on a lesser covert.

Photo 3.7.2-5. *Pipilo erythrophthalmus*. USNM 87666. Laurel, Maryland. 20 May 1982. Two white spots on left wing median coverts and one white spot on right wing median coverts. Some white on leading edge of greater coverts.
Photo 3.7.2-6: *Pipilo erythrophthalmus*. USNM 532234. South Falls Church, VA, 5 May 1969. Three to four outer scapulars with a white streak on the leading edge.

The next four photographs of Eastern Towhee specimens were collected in the Southeastern US. They are included to show some of the range of white streaking on the scapulars and/or white spotting on the terminal ends of the median and greater coverts.
Photo 3.7.2-8. *Pipilo erythrophthalmus*. USNM 626425. Tyndall AFB, Florida. 27 April 2001. White tipping on two outer median coverts on the left wing, one median covert with a white tip on the right wing.

Photo 3.7.2-10. *Pipilo erythrophthalmus*. USNM 222348. Christchurch Parish, South Carolina. Outer three greater coverts on the right wing with white tipping, left wing was missing these coverts.

Photo 3.7.2-11. *Pipilo erythrophthalmus*. USNM 222349. Christchurch Parish, South Carolina. Two outer median coverts on the left wing with white tipping, median coverts on the right wing without white tipping.

The bird below (see Photos 3.7.2-12), was caught during regular spring migration banding at Foreman’s Branch Bird Observatory, located on the Eastern Shore of Maryland in northern Queen Anne’s County just outside of Kingstown. It was banded on April 4, 2013.
Photo 3.7.2-12. *Pipilo erythrophthalmus*. Foreman’s Branch Bird Observatory, Kingstown, Maryland. 4 April 2013. Three greater coverts with white tipping on the leading edge.

Pilpilo maculatus oreganus. USNM 162458. Beaverton, Oregon.

The next two birds (see Photos 3.7.2-15 and 3.7.2-16) show more intermediate traits between Eastern and Spotted Towhees. Both are labeled Pipilo erythrophthalmus, one collected from Nebraska and the other from Yankton, SD. Both have a greater amount of streaking on the scapulars and/or white tipping to the median and greater coverts than any of the other birds we reviewed.

Photo 3.7.2-15. Pipilo erythrophthalmus. USNM 186073. Nebraska. 24 April 1903. White streaking on the leading edge of the outer scapulars, white tipping to most of the median and greater coverts. Typical white patch extending beyond the primary coverts as seen on Easterns.
Photo 3.7.2-16. *Pipilo erythrophthalmus*. USNM 528579. Yankton, South Dakota. 3 June 1965. Extensive white streaking on the outer edge of the scapulars and extensive white tipping on the median and greater coverts. Typical white patch extending beyond the primary coverts as seen on Easterns.

3.7.3 References

4. Adjournment
The workshop ended at 3:30 pm.

Photo 4-1. Members taking a lunch break in the Richmond Library or similar. Clockwise: Clive Harris, Patty Craig, Dan Small, Bill Hubick, Jared Fisher, David Bridge, Matt Hafner. Photo by Phil Davis.

5. Acknowledgements
Many thanks to the species account authors. Special thanks to Dave Bridge for hosting us and for exceptional support to MD/DCRC.

Respectfully submitted,

Bill Hubick, Chair
Pasadena, MD 21122
bill_hubick@yahoo.com

Phil Davis, Secretary
Davidsonville, MD 21035
p_davis@ix.netcom.com

15 Dec 2013